

BARCELONA

Dining on Details: LLM-Guided Expert Networks for Fine-Grained Food Recognition

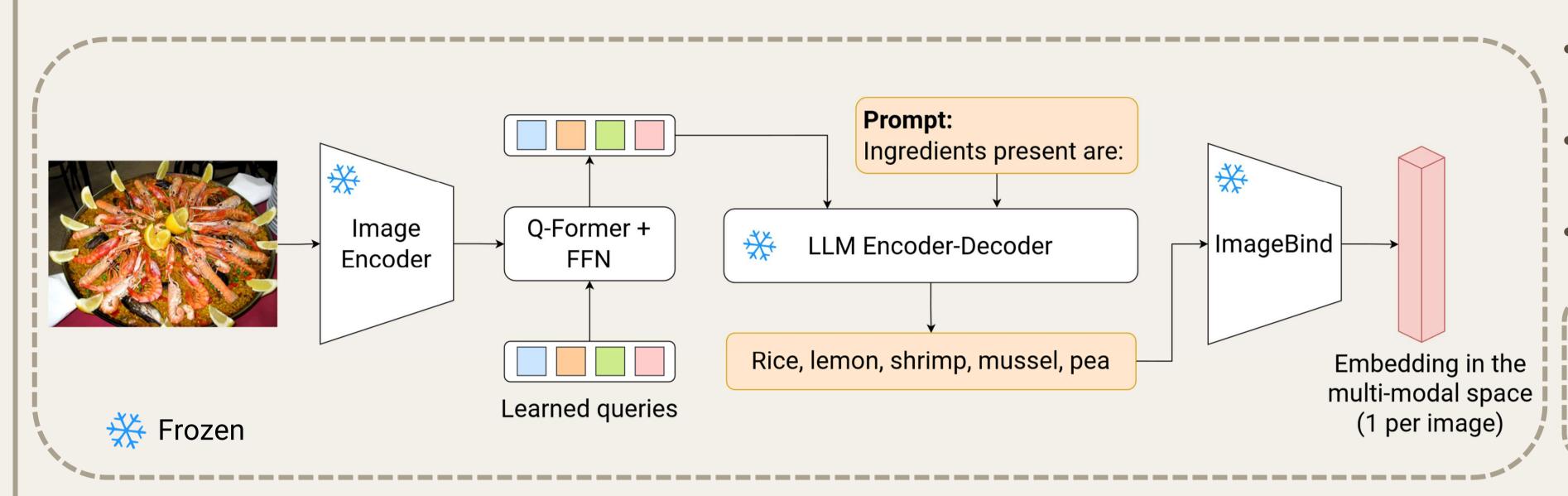
MADIMa 2023

Jesús M. Rodríguez-de-Vera¹, Pablo Villacorta¹, Imanol G. Estepa¹, Marc Bolaños², Ignacio Sarasúa³, Bhalaji Nagarajan¹ and Petia Radeva^{1,4} UNIVERSITAT DE TUDIA Universitat de Barcelona¹, AlGecko Technologies SL², NVIDIA Corporation³, Computer Vision Center⁴

SUMMARY

- Food recognition is a **fine-grained problem**: high inter-class similarity and intra-class variance.
- We propose Dining on Details (DoD), a subset expert-based approach in fine-grained food recognition.
- With power of recent LLMs and the robustness of ImageBind to find similar classes in the multi-modal space.
- End-to-end multi-task learning process, enhancing performance especially with highly similar classes.
- It is a **universal add-on** to any existing classifier.
- Obtain competitive results in various food benchmarks with different backbones, and state-of-the-art in Food-101.

OUR PROPOSAL: DINING ON DETAILS

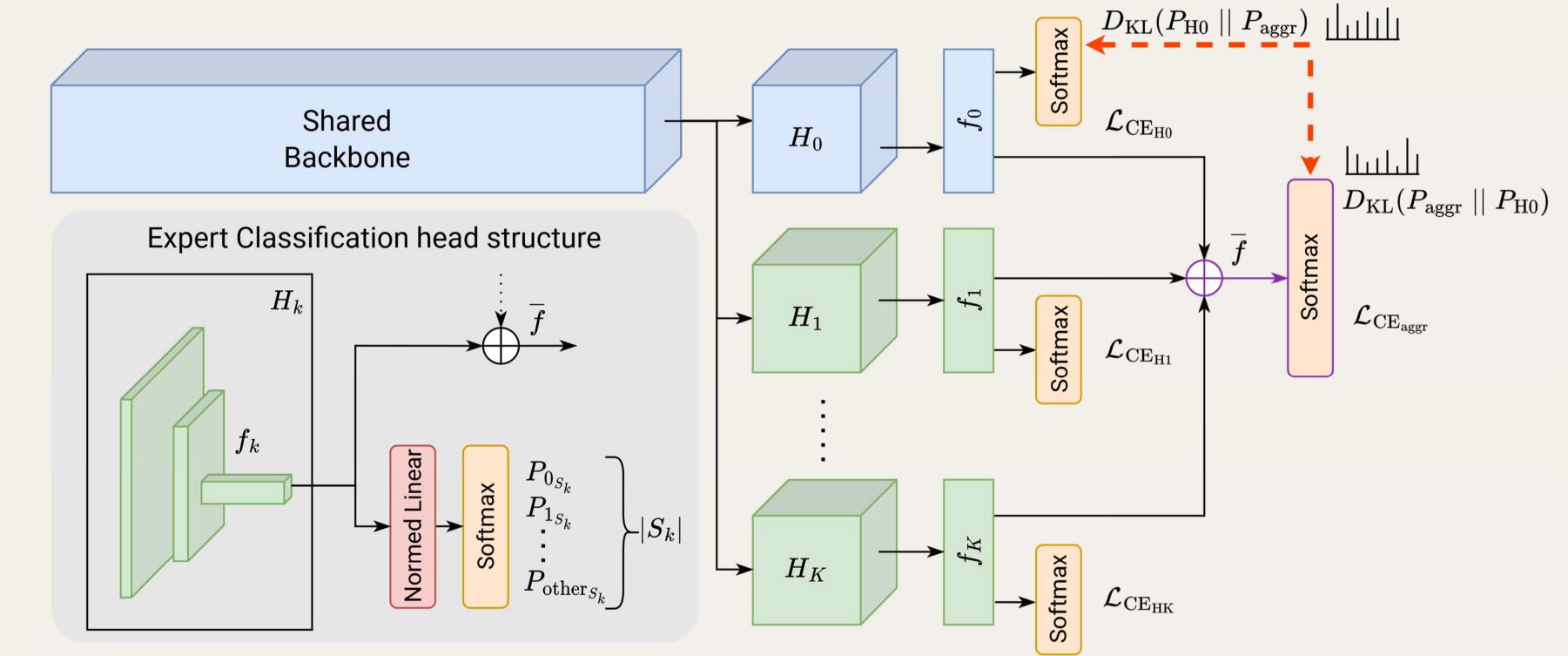


- Using BLIP-2, we use a pretrained image encoder and LLM to obtain the ingredient list of every image.
- ImageBind projects every list of ingredients to the multimodal latent space.
- Get the average vector for each class.

Hierarchical agglomerative clustering to find similar classes in the multi-modal space.

- For each cluster of classes, we append an expert classifier subnetwork after the baseline backbone.
 - Trained to distinguish specific in that cluster or "other".
- We average the last pre-classifier vector of every head (including) the original) and train a combined or aggregated classifier from that **regularized** vector.
- To speed up the learning, we use mutual knowledge distillation between the original classifier H0 and the aggregated classifier.
- Everything is trained jointly in an end-to-end multi-task fashion:

$$\mathcal{L} = \lambda_1 (\mathcal{L}_{ ext{CE}_{ ext{H0}}} + \mathcal{L}_{ ext{ML}_{ ext{H0}}}) + \lambda_2 rac{1}{K} \sum_{k=1}^K \mathcal{L}_{ ext{CE}_{ ext{Hk}}} + \lambda_3 (\mathcal{L}_{ ext{CE}_{ ext{aggr}}} + \mathcal{L}_{ ext{ML}_{ ext{aggr}}})$$



RESULTS

- Improves the baseline in a wide variety of datasets and backbones (CNN and transformers).
- Improves Food-101 SOTA by more than 1 point.

Table 1: Test accuracy (%) of baseline and proposed DoD.

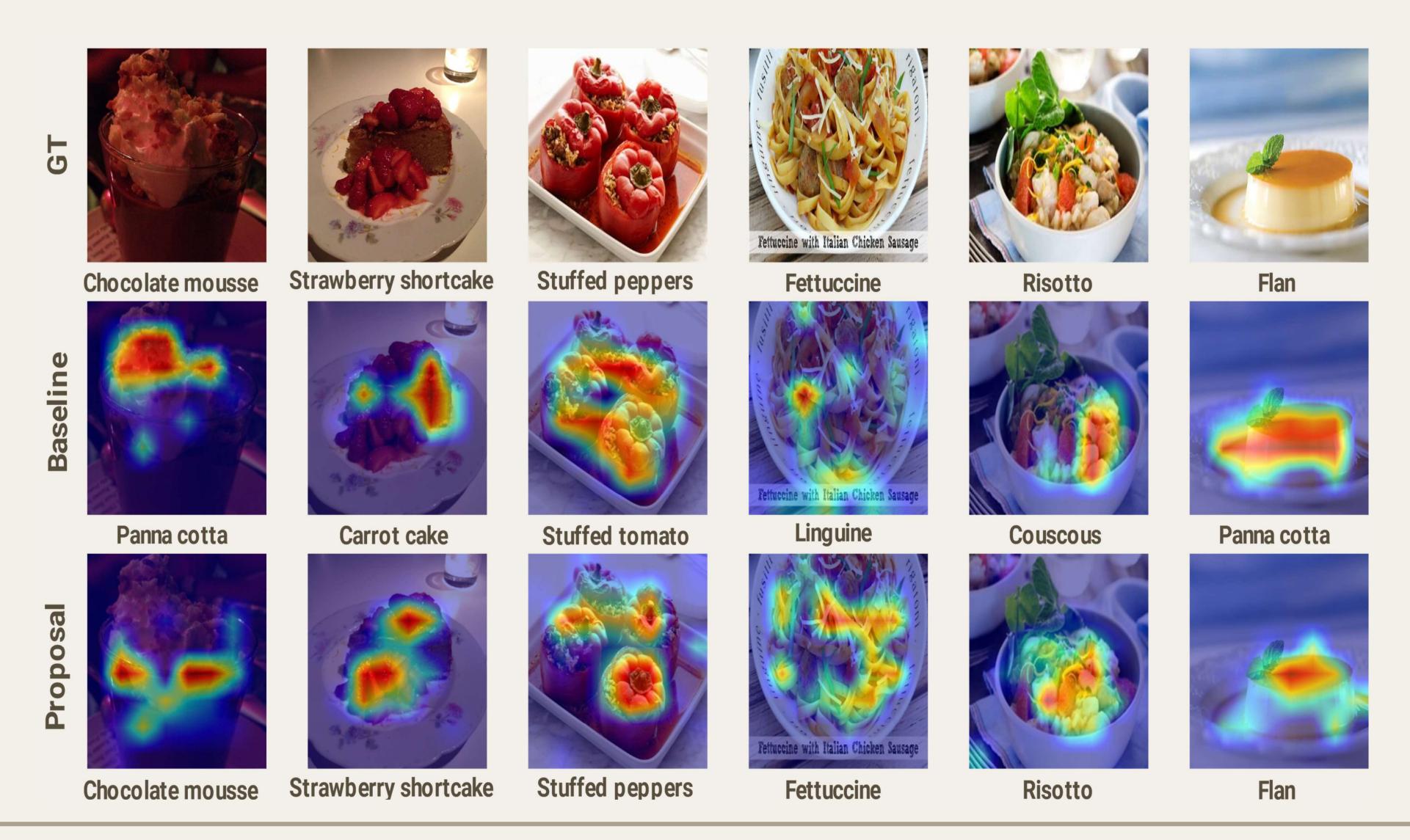
Dataset	Backbone	Baseline	DoD (Ours)	Gain
UECFood-100	EfficientNet-B0	78.43	79.58	+1.15
UECFood-100	ResNet-50	77.24	78.85	+1.61
UECFood-100	SwinV2-T	77.94	78.44	+0.50
Food-101	SwinV2-T	89.96	90.70	+0.74
FoodX-251	SwinV2-T	72.89	74.25	+1.36

Table 2: Comparison of DoD with SoTA methods in Food-101. † =bigger image size. § =subset-based method.

Method	Test Accuracy (%)	
Grafit (ICCV'21)	93.7	
EffNet-B7 (ICML'19) [†]	93.0	
PMG (CVPR'21) ^{†§}	87.5	
FGFR (Madima'22)§	93.8	
DoD + SwinV2-B§	94.9	

ANALYSIS

- The method mainly improves in previously highly confused images (very similar).
- GradCAM shows that DoD focuses characteristics and differentiating parts of the images.



ACKNOWLEDGEMENT